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SUMMARY 

A new mathematical formulation, called the pseudovorticity-velocity formulation, of the three-dimensional 
incompressible NavierStokes equations is presented as an alternative to the vorticity-velocity approach. For the 
model lid-driven cavity flow problem in two and three dimensions, combined with an explicit mixed 
spectral/iinite different numerical scheme the proposed formulation is found to be efficient and very accurate as 
compared with the results available in the literature. In particular, the simulation results demonstrate an attractive 
feature of the present formulation compared with the vorticity-velocity approach, namely that the divergence- 
free condition of the velocity field can always be achieved on a non-staggered mesh. 
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1. INTRODUCTION 

The mathematical formulations that are commonly used to simulate three-dimensional incompres- 
sible viscous flows include the primitive variables’ (velocity-pressure), vorticity-vector p ~ t e n t i a l ~ , ~  
and vorticity-velocity4 formulations. As indicated in an overview of these formulations by Gresho: 
each formulation has its own advantages as well as shortcomings with respect to the others. Both the 
vorticity-vector potential formulations and the vorticity-velocity approach have a distinct advantage 
over the velocityTressure formulation in that the pressure need not be calculated explicitly. The 
vorticity-velocity method, similar to the velocityTressure formulation but unlike the velocity-vector 
potential approach, suffers from a major difficult in obtaining a solenoidal velocity field so that the 
continuity equation is satisfied explicitly. For the vorticity-velocity formulation the use of a 
staggered mesh or alternative boundary conditions for the vorticity has been proposed to provide a 
divergence-free velocity field.6 In the velocity-vector potential formulation, however, the vector 
potential is not uniquely defined and a scalar potential is further required for the non-enclosed flow 
configuration. 

It follows from the foregoing that it is highly desirable to develop a formulation having the 
advantages of the velocity-vorticity formulation but avoiding the difficulty of obtaining a divergence- 
free velocity field. Jia and Nakamura’ recently presented a new formulation in terms of velocity and a 
new variable q for two-dimensional incompressible flow. It has been demonstrated that their 
formulation can be applied to both steady and unsteady flow simulations on a non-staggered grid, 
yielding an essentially divergence-free velocity field. The present study represents a continuing effort 
in pursuit of this aspect. In this paper we present a new formulation, called the pseudovorticity- 
velocity formulation, and its application to three-dimensional incompressible viscous flow 
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simulation. When applied to two-dimensional flow, the new formulation degenerates into the 
velocity-q formulation of Jia and Nakam~ra .~  Therefore the present formulation can be viewed as the 
three-dimensional extension of their formulation. The three-dimensional flow in an upper-lid-driven 
cavity is used as a test problem for the new formulation developed. 

2. PSEUDOVORTICITY-VELOCITY FORMULATION 

The non-dimensional governing equations of laminar, incompressible flow of a Newtonian constant- 
viscosity fluid can be written as 

v . v = o ,  (1) 

1 
Re 

av 
- + (V * VV) = -vp + - p v  at 

Here Re is the Reynolds number based on a characteristic length and a characteristic velocity of the 
flow: V and p denote the dimensionless velocity vector and the dimensionless pressure, respectively. 

Taking the divergence of the incompressible Navier-Stokes equations (2) and applying the 
continuity equation (1) leads to a Poisson pressure equation of the form 

v - [(V - VV) + Vp] = 0. (3) 

In order to satisfy equation (3) identically, a solenoidal vector 0 that satisfies 

v x 0 = (V * VV) + vp 

v2v = V(V * V) - v x w = -v x 0. 

(4) 
is introduced. Further, the viscous term in ( 2 )  can be recast as 

( 5 )  

Here w(= V x V) is the dimensionless vorticity vector. The Navier-Stokes equations are then 
rewritten by applying equations (4) and (5): 

E + v x  (;++(I. 1 
at 

From (6) it can be noticed that the new variable 15 is a vorticity-like quantity. 

(4), i.e. 
Next the governing equation for the new variable C;, is derived by first applying the curl operator to 

v x (V x &) = v x [(V - V)V+Vp] = (V - V)w - (w - V)V. (7) 

Then, using the condition of a solenoidal vector for 0, i.e. V . 0  = 0, the following relation is obtained 
as the governing equation for 0: 

v20 = -(V * V > o + ( w  - V)V = v x (V x w). (8) 

A new formulation for the three-dimensional incompressible flow simulation can then be expressed 
in terms of the velocity vector V and the new variable C;, governed by (6) and (8), respectively. In 
addition, taking the curl of (6) yields 

- = v 2  w+--w . aw at (- Rle ) (9) 
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From (9) the variable C;, can again be inferred to be a vorticity-like vector. Further, substituting 
equation (8) into (9), the following form of vorticity transport equation results: 

aw 1 
- + v x ( ( o x v ) = - ~ ~ ~ .  at Re 

Note that under the steady flow condition, equation (9) reduces to 

which leads to 

1 
Re c;,=---w+c. (12) 

In (12), C is an arbitrary constant vector and is taken to be a null vector for convenience. It can thus 
be inferred from (1 2) that for the present formulation under the steady flow condition the variable 0 
is physically proportional but opposite in sign to the vorticity vector o. Accordingly, the variable 0 
can be viewed as a counterpart of the vorticity in the sense of rotation. The steady velocity field is a 
result of the balance between them. Hereinafter we will refer to the vorticity-like variable C;, as the 
‘pseudovorticity’ or ‘antivorticity’ vector and the new formulation as the ‘pseudovorticity-velocity’ 
formulation. 

Alternatively, the present formulation can be derived by first rewriting the vorticity transport 
equation (lo), by means of the relations V x (V x o) = -V2w and o = V x V, in the form 

= o ,  

which leads to 

av 1 
- + o x  v+-v x 0 = vs. 
at Re (14) 

In (14), mathematically, S is a scalar, while physically, S = -(p + fV - V) by referring to the 
original NavierStokes equations (2). Further, taking the divergence of (14) and applying the 
continuity equation (I), we have 

v (w x v - VS) = 0. (15) 

Next, in order to have equation (1 5 )  hold identically, we assume a solenoidal vector 6 that follows 

v x c;, = 0 x v - v s .  

Equation (6)  is then obtained by substituting equation (16) into (14). Meanwhile, equation (8) can be 
obtained simply by taking the curl operator of (1 6). 

Another interesting observation of the present formulation is that the pseudovorticity vector can be 
shown, as derived in the following, to be a linear combination of the vorticity and the time derivative 
of the vector velocity potential Q,, which is related to the velocity by the relation V = V x CD. 

(16) 

Substituting the relation V = V x Q, into (6)  leads to 

= o ,  
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which implies that 
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a@ 1 
-+++- - -o=C.  
at Re 

Under the steady flow condition, equation (18) reduces to (12). 
Moreover, taking the divergence of (6) leads to 

-- - 0  
a(v v) 

at 

and thus V - V = constant. This implies that the present formulation can effectively maintain the 
divergence-free condition as long as an initial divergence-free velocity field is used. 

For two-dimensional flow the stretching term (0 * V)V in (8) vanishes together with 0 = Wki$ and 
C;, = f&&, where &k is the unit vector normal to the flow plane. Accordingly, the form of (6) and (8) 
degenerates into a formulation identical with that of Jia and Nakamura7: 

It follows that the scalar variable q employed by Jia and Nakamura7 is simply the component of the 
pseudovorticity vector normal to the flow plane, &k. 

The boundary conditions associated with the velocity equation (6) can be enforced 
straightforwardly by the given physical conditions of the velocity field under consideration. On 
the other hand, the boundary conditions for the pseudovorticity vector equation (8) can be derived 
utilizing the fact that the relation (12) also holds at the Dirichlet boundary condition and thus the 
boundary pseudovorticity can be treated in a similar manner to the vorticity on the boundary. 

To validate the present formulation, the model problem of three-dimensional upper-lid-driven flow 
in a cubic cavity (1 x 1 x 1) is considered as shown in Figure 1. 

Figure 1. Flow configuration of three-dimensional upper-lid driven cavity flow 
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3. SOLUTION METHODOLOGY 

The system of equation (6) and (8) is spatially discretized by applying a Chebyshev collocation 
method in the directions x and z and a second-order central finite difference scheme in the y-direction. 
The spectral discretization grids are given by the GaussLobatto collocation points 

xi=cos rc- , i = O  , . . . ,  I ,  ( :> 
A non-uniform finite difference grid distribution that provides denser grids near the boundaries is 
constructed via the scaled transformation 

Here q is the transformed co-ordinate and 8 is the stretching degree. The mixed spectral/finite 
difference technique, as opposed to the pure spectral method, is employed here mainly owing to the 
fact that the finite difference scheme provides a better resolution of the strong velocity gradient in the 
y-direction near the constant-speed moving upper lid. 

The time integration procedure is performed on the velocity equation (6) by means of an explicitly 
time discretization. Specifically, a three-level second-order Euler scheme is applied to replace the 
time derivative of the velocity vector, while the spatial derivative terms in (6) are evaluated using the 
second-order Adams-Bashforth scheme. In vector notation the time integration scheme adopted for 
the velocity equation can be expressed as 

where n denotes the time level. For the first time step the first-order explicit Euler time discretization 
is employed for the velocity equation. 

The Poisson equations of the pseudovorticity 6 are solved using a preconditioned conjugate 
gradient iterative scheme Bi-CGSTAB-P8 in which the matrix multiplication and the conjugate 
gradient method can be easily vectorized. This preconditioned iterative scheme is particularly 
efficient for the solution of the system of equations with non-symmetric matrices that the Chebyshev 
spectral collocation discretization always generates. 

The solution procedure for the lid-dnven cavity flow problem utilizing the pseudovorticity- 
velocity formulation starts with solving the Poisson equations of the pseudovorticity vector based on 
the initially/previously known vector field. The iterative computation for the pseudovorticity 
equations continues until a relative convergence criterion of is achieved. Then the new velocity 
field is evaluated by solving the velocity equation in the form of (24). For a steady flow solution the 
above-described solution procedure is repeated until a steady state velocity field with an absolute 
convergence criterion of is reached. To ensure the accuracy of the results, double precision is 
employed throughout the present simulations. 

4. RESULTS OF TEST PROBLEM 

Numerical simulations have been conducted using the mixed spectral/finite difference method for the 
upper-lid-driven flow in a cubic cavity at three values of the Reynolds number, Re= 100, 400 and 
1000. Both two- and three-dimensional flow configurations are considered. 
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4.1. 2 0  square lid-driven cavityjow 

First, results of the steady two-dimensional lid-driven flow are presented. As a result of a series of 
mesh convergence tests using various mesh systems, a 33 (x-direction) x 33 @-direction) mesh 
system was selected for the cases of Re = 100 and 400 and a 41 x 41 mesh was used for Re = 1000. 
The time step used depends on Re: a time step of 0.001 for Re= 100 and 0.004 for Re=400 and 
1000. For each time step the CPU times required on an HP 715/75 workstation are about 0.13 s for 
the 33 x 33 mesh and 0.18 s for the 41 x 41 mesh. The steady lid-driven cavity flow structures 
obtained using the present formulation are illustrated by velocity vector plots and streamline contour 
maps in Figures 2 and 3, respectively. The computed flow structures are evidently in good qualitative 
agreement with the results of the existing literat~re.'~' Furthermore, Figure 4 presents the velocity 
profiles of the horizontal velocity component u at the cavity midplane and of the vertical velocity 

.................... ................... .................... 1 

........... .......... .......... -...--*- ......... .......... - - _ - - - _  ......... ...................... 

@) 

(c) 
Figure 2. Velocity vectors for (a) Re = 100, (b) Re = 400 

and (c)  Re = 1000 

(C) 
Figure 3. Streamline contours for (a) Re= 100, (b) 

Re = 400 and (c) Re = 1000 
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Figure 4. Velocity profiles on (a) vertical centrelines and (b) horizontal centreline 

Table I. Comparison of location of primary vortex centre (xc,  y c )  and its streamfunction $c and vorticity wc 

Present Ghia et ~ 1 . ~  Ku et al.' 

Re o t c , Y c )  * C  WC ( X C 7 Y C )  $ C  WC +C 

100 (0.6154, 0,7368) -0.1037 3.1670 (0.6172, 0.7344) -0.1034 3.1665 -0.1037 
400 (0.5550, 0.6078) -0.1136 2.2951 (0.5547, 0.6055) -0.1139 2.2947 -0.1137 

1000 (0.5342, 0.5615) -0.1161 2.0503 (0.5313, 0.5625) -0.1 179 2.0497 -0.1162 
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Table 11. Maximum absolute value of velocity 
divergence for 2D and 3D lid-driven cavity flows 

IV * VI,?., 

Re 2D 3D 

100 9.495 x l o p i 3  1.243 x lo-’’ 

1000 1.020 x lopL2 1.049 x lo-’’ 
400 5.946 x 1 0 - l ~  9.500 x 1 0 - l ~  

1-  

0.8. 

0.6. 

0.4. 

0.2 ’ 

0- 

-0.2 ’ 

V 

1 I 1 

0 0.5 1 

0.8 

r+ two-dimensional I 0.6 

0.4 

w.2 
0 

-0.2 

(4 0 0.5 1 

Figure 5 .  Velocity profiles on vertical and horizontal centrelines in z-symmetry plane for (a) Re= 100, (b) Re=400 and (c) 
Re=  1000 
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y 

component v at the horizontal midplane for the three values of Re. The predicted velocity profiles 
appear to agree very well with the results of Ghia et ~ 1 . ~  that are also shown in the figure. In Table I 
we present a comparison of the results of the primary vortex centre locations as well as their 
streamfunction and vorticity with those obtained by Ghia et al.9 and Ku et al.' It is clear that the 
results computed using the present formulation are in good agreement with the results obtained by the 
finite difference solutions of Ghia et ~ 1 . ~  using a 129 x 129 mesh as well as with the pseudospectral 
solutions of Ku et al.' Another important aspect of the velocity fields computed using the present 
formulation is that the divergence-free condition can be essentially satisfied as demonstrated by Table 
11, in which the maximum absolute values of the velocity divergence (V.V) for the three values of Re 
are listed. This provides W e r  validation of the capability of the pseudovorticity-velocity 
formulation to yield an essentially divergence-free velocity field, in contrast with the standard 
vorticity-velocity approach. 

.. . . . . . . . . . . . . . . . . . .  , , , , .. . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . .  
.: .... : : : . . . . . . . . . . .  , ..... 

. . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  . .  . . . (  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  .. I:::::: : : : : : : : : : : : :::::::j 
y:::::: : : : ........ ........ ....... 

........ ........ . . . . . . . .  . . . . .  L . . . . .  i I ,  

. . .  . . .  . .  . .  . .  . .  . .  . .  . .  . .  . .  . .  . .  . .  . .  . .  . .  - 

. . . . . . .  , , .... . . . . . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . . . .  .............. . . . . . . . . . . . . .  I 
X 

b .  : : : : : : : z : i??. ) ; z i r  .. : . . . . . . . . . . . . .  . . . . . . . . . . . . .  ...................... ...................... ...................... . . . . . . . . . . . . . . . . .  . . . . . .  . . . . . . . . . . . . . . . .  . . .  . . , I ,  . S l l t ,  
" " ' I 1 1 1  

. . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  rn ..... . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . .  

I::.; ; j ; i ; ; I ; 1 i:;:;l . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  . . . . . . . .  : : :  i i : :  : : : : ' . ' .  
: : . : , . i q i i  , -  .- . .  : : : : ,  

(C) X 

Figure 6. Flow direction vectors for Re = 1000 on (a) z = 0.043 plane, @) z = 0.5 plane and (c) z = 0.957 plane 
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4.2. 3 0  lid-driven cavity Jow 

Next, results from the simulation of the three-dimensional upper-lid-driven cavity flow using the 
present formulation will be presented. For the cases of R e =  100 and 400 a mesh of 25 (x- 
direction) x 41 @-direction) x 25 (2-direction) was used, while for Re = 1000 a 31 x 47 x 31 mesh 
was found to be sufficiently fine. The time steps adopted for the calculations are 0.002 for Re = 100 
and 0.008 for Re = 400 and 1000. Typically, the CPU time required for each time step using a mesh 
of 3 1 x 47 x 3 1 is 38.4 s on an HP 7 15/75 workstation. In Figure 5 the computed steady velocity 
profiles of u on the vertical centreline and v on the horizontal centreline of the symmetry plane 
( ~ 0 . 5 )  at R e =  100, 400 and 1000 are compared with the 3D predictions by Ku et al.' Also 
superimposed in Figure 5 are the computed results from our 2D simulations at the corresponding 
values of Re, Evidently, our predicted velocity profiles compare very well with the results of Ku et 
al. ' In addition, similar to what was found in the previous study,' comparison of the velocity profiles 
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Figure 8. Flow direction vectors for Re = 1000 on (a) 
z = 0.5 plane, (b) x = 0.5 plane and (c) y = 0.5 plane 
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obtained from 2D and 3D simulations clearly demonstrates that the three-dimensional effect of the 
velocity profiles becomes increasingly distinctive with increasing Re. The three-dimensional effect 
can be further inferred from the disparity of the velocity vector plots at three x-y planes z = 0.043, 0.5 
and 0.957 shown in Figure 6 for R e =  1000. Moreover, Figures 7 and 8 display the velocity vector 
plots on three midplanes x , y ,  z = 0.5 for Re = 400 and 1000 respectively. The symmetry of the 
velocity field with respect to the midplane z = 0.5 can be readily detected from Figure 6. The velocity 
vector plots at the midplanes x = 0.5 and y = 0.5, shown in Figures 7(b) and 7(c) respectively, 
clearly illustrate the onset of contra-rotating transversal vortices, which strengthen with increasing Re 
and become more distinctive at Re = 1000 as displayed in Figures 8(b) and 8(c). The pair of contra- 
rotating vortices near the bottom comers of the midplane y = 0.5, as displayed in Figures 7(c) and 
8(c), tends to protrude towards the centre with increasing Re. Moreover, the pair of primary vortices 
on the plane x = 0.5 is seen to shift towards the lower comers of the cavity as the Reynolds number is 
increased from 400 to 1000. Meanwhile, a pair of secondary vortices near the upper comers becomes 
increasingly discernible, as revealed in Figures 7(b) and 8(b). This has also been observed in previous 
studies. ' @ I 2 .  

Finally, the velocity divergence of the computed three-dimensional velocity fields is evaluated and 
the maximum absolute values of the velocity divergence obtained are also presented in Table 11. 
Again an essentially divergence-free velocity field is clearly achieved for the three-dimensional flow 
simulations using the present formulation, making it an attractive alternative to the vorticity-velocity 
approach. 

5. CONCLUDING REMARKS 

A new formulation in terms of the velocity vector and a pseudovorticity vector (pseudovorticity- 
velocity formulation) has been developed for solving the three-dimensional incompressible Navier- 
Stokes equations. The new variable, pseudovorticity, may be viewed as a counterpart of the vorticity 
in the sense of rotation. Numerical simulations using the pseudovorticity-velocity formulation 
combined with a mixed spectral/finite difference scheme have been undertaken for the 2D and 3D 
upper-lid driven cavity flow problems. The accuracy and efficiency of the proposed formulation have 
been demonstrated by the good agreement of the predicted results with those reported in the 
literature. In particular, the results have highlighted the attractive feature of the new formulation, in 
contrast with the vorticity-velocity approach, that an essentially divergence-free velocity field can 
always be obtained on a standard mesh. For two-dimensional flow the present formulation 
degenerates to the formulation proposed by Jia and Nakamura' and thus the present formulation can 
be viewed as its three-dimensional extension. 
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